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A Hamiltonian is derived for a zigzag carbon nanotube with an arbitrary number of weak electron-electron
charge and spin interactions, which become significant in ultraclean systems. The renormalization group and
bosonization are used to determine the ground-state phase diagram. Our phase diagram contains some exotic
phases which have not previously been predicted in carbon nanotubes with physically possible interaction
profiles. Phases of the undoped case include Mott insulators and a variety of density wave states. In the doped
case a Tomanaga-Luttinger liquid is possible.
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Simple tight-binding calculations show that an undoped
�n ,m� carbon nanotube �CNT� will be metallic provided
p= �n−m� /3 is an integer, implying that one third of
all CNT are metallic.1 However, recent experiments on ultra-
clean CNT have indicated that all CNT are Mott insulators
with gaps of about 10–100 meV.2,3 These results are sup-
ported by theoretical models of CNT which include electron-
electron �e-e� charge, or Coulomb, interactions.4 Other pos-
sible mechanisms for the creation of gaps include curvature
effects and lattice distortions but the resulting gaps, if they
appear at all, tend to be small and only correspond with
experiments in cases where e-e interactions can be
ignored.5,6

Many theoretical studies of e-e interactions in CNT con-
sider just on-site, and possibly nearest-neighbor, charge
interactions.4,7–9 This is a reasonable approximation if the
interactions are strongly screened by, for example, a metallic
substrate or a CNT bundle.10,11 In other cases CNT have
strong long-range charge interactions12–14 which heavily in-
fluence several physical properties.2,3,15–18 Furthermore,
e-e spin interactions are rarely discussed, despite spin
effects being quite important in CNT.19,20 In this
Brief Report we construct a Hamiltonian for zigzag CNT
which includes both e-e spin and charge interactions. The
interaction profile is completely general and may account for
an arbitrary number of interactions between electrons on any
two lattice sites. However, these interactions must be weak
relative to the hopping strength. We use our Hamiltonian to
determine the phase diagram of both an undoped and doped
zigzag CNT, and find some exotic phases, such as
a f-density wave �FDW� and a Tomonaga-Luttinger liquid
�TLL�.

A zigzag CNT is constructed by rolling the graphene lat-
tice shown Fig. 1 about the y axis so that the x axis is around
the circumference. The hexagonal lattice divides into two
identical triangular sublattices, A and B, with lattice constant
a. We assume that hopping only occurs between nearest-
neighbor sites but e-e interactions can exist between any two
sites. The full Hamiltonian is separated into four parts
H=H0+HU+HV+HJ. The Hubbard Hamiltonian describes
hopping,

H0 = − t �
�i,j��A

�
�

�cij�
† c�i−1��j+1�� + cij�

† c�i+1��j+1�� + H.c.�

− t� �
�i,j��A

�
�

�cij�
† ci�j−1�� + H.c.� , �1�

where � represents the spin and H.c. is the Hermitian conju-
gate. The hopping strengths t and t� may be different when
the curvature of the CNT is large but here we will assume
t= t�. For on-site interactions,

HU = �
�i,j��A,B

Uijnij↑nij↓, �2�

where nij�=cij�
† cij�. The charge interaction between different

sites can be represented by the Hamiltonian

HV =
1

2 �
�i,j��A,B

�
�k,l���0,0�

Vkl
ijnijn�i+k��j+1�, �3�

where two integers �k , l� define the separation of two distinct
sites, and nij =��nij�. Similarly, for spin interactions between
different sites,

HJ =
1

2 �
�i,j��A,B

�
�k,l���0,0�

Jkl
ijSij · S�i+k��j+l�, �4�

with spin operators Sij =
1
2����cij�

† ����cij�� and Pauli spin
matrices �= ��x ,�y ,�z�. Note that in HV and HJ we do not
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FIG. 1. �Color online� A graphene lattice with the two sublat-
tices represented by triangles �sublattice A� and squares �sublattice
B�. A lattice site is represented by the set of integers �i , j�.
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include �k , l�= �0,0� as this is already accounted for in HU,
and the factor of one half is required because we have
counted each interaction twice.

The energy dispersion of an interactionless CNT can be
obtained from H0 and the Fermi momentum, or Dirac points,
of a metallic �n ,0� zigzag CNT can be shown to be
��2� /3a , �2� /�3a� at or very near to half filling. The par-
tial Fourier transform in the x direction will be dominated by
the x component of the Fermi momentum and we can sim-
plify to ckl=

1
�n

�q=�e2�iqk/3dql, where q=� accounts for mo-
mentum in both directions and dql� is a fermion operator.7

After substituting this Fourier transform into Eq. �2� one ob-
tains a two-leg ladder Hamiltonian with no rungs. The legs
are represented by q=� and lie in the y direction.7,9

After substituting the partial Fourier transform the inter-
action Hamiltonians become

HU = �
j

U j��
qq�

dqj↑
† dqj↑dq�j↓

† dq�j↓ + �
q

dqj↑
† dq̄j↑dq̄j↓

† dqj↓� ,

HV = �
jl���

�Vl
j�
qq�

dqj�
† dqj�dq�j+l��

† dq�j+l��

+ Vl�
j�

q

dqj�
† dq̄j�dq̄j+l��

† dqj+l��� ,

HJ = �
jl������

�Jl
j�
qq�

dqj�
† ����dqj��dq�j+l�

† ����dq�j+l��

+ Jl�
j�

q

dqj�
† ����dq̄j��dq̄j+l�

† ����dqj+l��� , �5�

where q̄=−q and the effective interactions are

U j = �
i

Uij/n2 = Uj/n ,

Xl
j = �

ik

Xkl
ij /2n2 = �

k=−Nx
X

Nx
X

Xkl
j /2n ,

Xl�
j = �

ik

e4�ikq/3aXkl
ij /2n2 = �

k=−Nx
X

Nx
X

cos�4�k/3a�Xkl
j /2n , �6�

for X=V ,J and X=V ,J. We can remove the i dependence on
the interactions because for each j we have an identical in-
teraction profile for i=0,1 , . . . , �n−1�. In Xl�, symmetry ar-
guments allow us to remove the q dependence. We have
introduced the integer Nx

X to define a hard cutoff for k. For a
�n ,0� zigzag CNT, Nx

X�n and if Nx
X=n the lower limit of the

sum should be changed to −�Nx
X−1� in order to avoid double

counting.
The interacting two-leg ladder problem can be solved us-

ing a well-developed method,21–29 although with some differ-
ences due to the absence of rungs.23,30 The Fermi operators
dqj� are linearized about the Fermi momentum kF by expand-
ing in terms of chiral left-moving and right-moving fields
and rapidly varying terms are discarded. One can then write
the interaction Hamiltonian in terms of four-field current op-

erators, the coefficients of which are the coupling constants
which describe scattering about the lattice and ultimately de-
termine the phase. A requirement of this method is that the
effective interaction strengths are weak, U j ,Xl

j ,Xl�
j � t but

this does not imply that the original interactions Uij and Xkl
ij

must be weak. The effective interactions are obtained from
the original interactions after rescaling by n, as can be seen
in Eq. �6�. Therefore, provided we assume that n is not small
it is possible for the effective interactions to be weak, even if
the original interactions are not.

All coupling constants may be expressed in terms of the
interaction strengths. The forward-scattering coupling con-
stants are

f12
� = 2b	U + �

l
�4Vl − cos 2lbkF
2Vl +

3

2
Jl��� ,

f12
� = 2b	U + �

l
�cos 2lbkF
2Vl −

1

2
Jl� − Jl�� , �7�

where q=� is relabeled as q=1,2, b=a�3 /4 and fqq=0,
fqq̄= f q̄q. The backward-scattering coupling constants are

b11
� = 2b	U + �

l
�4Vl − cos 2lbkF
2Vl� +

3

2
Jl���� ,

b12
� = 2b	U + �

l
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3

2
Jl� + 4Vl��� ,
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� = 2b	U + �

l
�cos 2lbkF
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1

2
Jl�� − Jl�� ,

b12
� = 2b	U + �

l
�cos 2lbkF
2Vl −

1

2
Jl� − Jl��� , �8�

with bqq�=bq̄q̄�. Finally, for umklapp scattering,

u11
� = 2b�U + �

l

�− 1�l�2Vl − Jl�� ,

u12
� = 2b�2U + �

l

�− 1�l
2Vl + 2Vl� −
3

2
Jl −

3

2
Jl��� ,

u12
� = 2b�

l

�− 1�l
− 2Vl + 2Vl� −
1

2
Jl +

1

2
Jl�� , �9�

with uqq�=uq̄q̄� and uqq
� =0. All sites in the same sublattice are

identical and one can map between the two sublattice with
l→−l. Therefore, all sites have an identical interaction pro-
file and we can drop the j superscript. We introduce the
integer Ny

X to define a hard cutoff for l, l�Ny
X, for

X=V ,J. Note that we cannot have any �k , l� which satisfies
k�Nx

X and l�Ny
X as not all these values of �k , l� define

distances between two lattice sites in the CNT lattice. The
above solutions of the coupling constants are completely
general and any values can be used for U, Vkl, and Jkl, pro-
vided the effective interactions are weak U ,Vkl ,Jkl�nt. Our
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solutions reduce to just on-site interactions when Nx,y
X =0 or

up to nearest-neighbor interactions when Nx,y
X =1. By renor-

malizing the coupling constants and bosonizing the Hamil-
tonian, the Hamiltonian can be much simplified and the
ground-state phase can be determined.23

To illustrate how a ground-state solution may be obtained
we consider a special case where the interactions are defined
in terms of two independent variables, V and J. We assume
that all spin and charge interactions are unscreened up to
l=Ny

X and k=Nx
X so that the interaction strength between

any two sites is inversely proportional to the distance be-
tween them, i.e., Xkl=X /d�k , l�, where d�k , l� is the distance
represented by the integers �k , l�. In using this expression we
ignore not only short-range screening but also the shape of
the atomic wave function, which has a significant influence
on the interaction strength. However, as the main influence is
the distance, our simplification is reasonable. The charge in-
teraction V must be positive as it is repulsive. The spin in-
teraction J can be positive or negative for antiferromag-
netism and ferromagnetism, respectively. A third variable U
may be defined but as the renormalization group is deter-
mined solely by V /U and J /U we simply make U constant,
although it must be positive.

In the undoped, or half filled, case there are nine possible
phases, four Mott phases, four density wave phases, and a
TLL phase. As these phases and their associated order pa-
rameters are explained in detail elsewhere9 we will only give
a brief description here. The possible Mott phases are a
D-Mott, S-Mott, D�-Mott, and S�-Mott. The S refers to sym-
metric s-wave pairing of chiral fields and the D refers to
antisymmetric d-wave pairing. For the unprimed Mott phases
the center of mass of the pairing falls, on average, between
two nearest neighbor sites, while for the primed Mott phases
the center of mass falls between two next-nearest neighbor
sites. The density wave phases include a CDW, a p-density
wave �PDW�, a FDW, and a chiral current phase �CCP�. The
CDW has an electron density which alternates between no
electron and two electrons per site. The PDW consists of
nearest-neighbor dimers. A CCP allows currents to flow
along the zigzags of the CNT lattice while a FDW has non-
zero current flow between next-nearest neighbors. In the
doped case there are only five possible phases because of the
broken particle-hole symmetry. There are two “supercon-
ducting” phases, so-called because they have a nonzero order
parameter which resembles a superconducting order param-
eter. The antisymmetric order parameter defines a d-wave
superconductor, or D-SC, and the symmetric one defines a
s-wave superconductor, or S-SC. There are two density wave
phases, one is a combination of the undoped CDW and
PDW, which for convenience we name a CDW, and the other
is a combination of the undoped CCP and the FDW, which
we name a CCP. The doped case may also have a TLL phase.

Figure 2 shows phase diagrams of a �12, 0� zigzag CNT at
half filling and when doped but still close to half filling. For
the undoped case with Nx,y

X =1, when V /U is small the on-site
repulsion U will dominate and set one electron per site. If, in
addition, J /U is small the electron spins are not ordered and
one always finds a D-Mott phase. Increasing V will encour-
age on-site pairings on alternative sites when the repulsion
from the three nearest neighbors exceeds the on-site repul-

sion, resulting in a CDW phase. Antiferromagnetic spin in-
teractions between nearest neighbors tends to favor the
D-Mott phase over the CDW phase and so the D-Mott phase
has a greater range when J /U is large and positive. However,
the opposite is true for ferromagnetic interactions. There is
some conflict between the interactions when V /U is small
and J /U is large and negative, resulting in a number of dif-
ferent phases.

In the doped case with Nx,y
X =1 the D-SC and CDW phases

are the analogs of the D-Mott and CDW phases in the un-
doped case. For small charge interactions and large ferro-
magnetic spin interactions a TLL phase can be found. It can
be shown that the TLL may only appear when b11

� 	 f12
� �Ref.

29� and from Eqs. �7� and �8� it can be shown that this
constraint generally requires J
0. A TLL is defined by the
convergence of all coupling constants as the system is renor-
malized. Since one cannot renormalize indefinitely it is not
possible to state conclusively that the TLL phase shown in
Fig. 2�c� is definitely a TLL as it may be some other phase
which appears to converge after much renormalization and
then suddenly diverges.29 In either case, after considering a
number of different values for Nx,y

X we conclude that TLL-
like behavior only arises when the e-e spin interactions are
ferromagnetic and when these spin interactions are approxi-
mately of the same order as the charge interactions. This
gives a clear indication of the importance of e-e spin inter-
actions in CNT.

Interactions which extend beyond nearest neighbors tend
to lead to frustration and so the phase is not always obvious.
When V /U and J /U are small the undoped case for Nx,y

X =2
will be a D-Mott phase, like the simpler Nx,y

X =1 case. As V
increases a conflict arises between satisfying repulsion for
on-site, nearest-neighbor and next-nearest-neighbor interac-
tions. The PDW can satisfy some of these repulsive interac-
tion as well as antiferromagnetic nearest-neighbor interac-
tions and so the PDW dominates for most of J	0. For
ferromagnetic interactions on-site pairing is more likely as it
minimizes the ferromagnetic conflict between nearest neigh-
bors and next-nearest neighbors. However, a CDW phase
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FIG. 2. Phases of a �12, 0� CNT �a� undoped, Nx,y
X =1; �b� un-

doped, Nx,y
X =2; �c� doped, Nx,y

X =1; and �d� doped, Nx,y
X =2.
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would conflict with the next-nearest-neighbor repulsive inter-
actions, so instead the phase is a S�-Mott in which the pairs
are distributed randomly. In the doped case the D-SC, S-SC,
and FDW phases are analogs of the undoped D-Mott,
S�-Mott, and CCP phases, respectively. The CCP dominates
this phase diagram, particularly for large V /U and positive J
as frustration is minimized through the flow of current. Such
a phase is less likely in the undoped CNT as repulsive inter-
actions in a half-filled lattice tend to restrict current flow.

In the undoped case we find that it is Ny which essentially
determines the appearance of the phase diagram. For odd Ny
the phase diagram will be similar to Fig. 2�a� but if Ny is
even the phase diagram will be similar to Fig. 2�b�. While
there may be some minor differences, for example, the
S-Mott phase is larger when Ny =3 compared to Ny =1 and is
shifted to the right of the phase diagram, the types of phases
and their approximate positions is much the same. The dif-
ferences between odd and even Ny are essentially due to the
cosine term in Eqs. �7� and �8� reducing to �−1�l at half
filling when kF=� /2b.9 In contrast, Nx has only a slight in-
fluence on the phase diagram. For example, increasing Nx
with constant even Ny may cause the FDW phase region to
spread to reasonably small values of J /U and V /U but the

same phases are observed in all cases. The phase diagrams
for the doped cases show more variety compared to the un-
doped cases. While they are not overly sensitive to changes
in Nx, very different phase diagrams can be obtained for
different Ny. The two cases shown in Figs. 2�c� and 2�d� are
fairly typical examples.

In conclusion, we have derived a Hamiltonian which is
applicable to CNT with generic e-e spin and charge interac-
tions, in contrast to most theoretical studies which only con-
sider on site and possibly nearest-neighbor charge interac-
tions. As it is now possible to produce ultraclean CNT in
which long-range interactions are not strongly screened, the-
oretical models that are able to deal with numerous interac-
tions are of increasing importance. The illustrative example
shows that a far richer phase diagram is possible when both
charge and spin interactions are considered, for example, a
TLL requires ferromagnetic spin interactions. Furthermore,
we find that solutions obtained from only nearest-neighbor
interactions do not necessarily produce an accurate picture.
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